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Single molecule tracking of heterogeneous diffusion

Jianshu Cao
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 27 November 2000; published 16 March 2001!

The mean square displacement of heterogeneous diffusion obeys the Einstein relation, thereby showing no
sign of heterogeneities in the ensemble measurement of the diffusion constant. The signature of spatial het-
erogeneities appears in the time evolution of the non-Gaussian distribution and in the cross correlation between
the square displacements at different times, both available from single molecule diffusional trajectories. As a
quantitative measure, the non-Gaussian indicatorg(t) decays asymptotically to zero according to 1/t for finite
time correlation, but saturates at a plateau value for power-law correlation. In addition, the joint moment
correlation functionf (t,t) provides a direct probe of the memory effect of the fluctuating rate constant. A
two-state diffusion model and a stochastic Gaussian model are constructed to evaluate these quantities and are
shown to yield the same result within the second cumulant expansion.
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I. INTRODUCTION

Single molecule detection and imaging has provided r
and detailed information about many fundamental phys
processes@1–6#. Such information is often hidden in en
semble measurements but can be obtained from careful
tistical analysis of single molecule data@7–13#. Several ar-
ticles @14,15# have extensively reviewed the current progre
of single molecule methods in various systems ranging fr
low-temperature amorphous solids to room-temperature
zymatic reactions. The focus of this paper is the single m
ecule detection of translational diffusion. Schmidt and c
workers have recorded translational diffusion trajectories
individual fluorescence-labeled lipid molecules in a flu
lipid membrane. They found anomalous diffusion consist
of a slow component and a fast component and interpre
their findings as a result of island structures of the membr
surrounded by barriers for lipid diffusion@16#. The diffusion
trajectories of single dye molecules have also been reco
in polyacrylamide gels by Dickson and co-workers@17# and
in solution by Xu and Yeung among others@18–20#.

Anomalous translational diffusion is an intriguing topic
physics, chemistry, and biology. It has long been recogni
that spatial heterogeneities are inherent in the dynamic
glass-forming systems including polymers, supercooled
uids, supercritical liquids, and colloidal fluids@21–25#.
Zwanzig studied percolation in a dynamic disordered sys
using a two-zone diffusion model, where spherical doma
of higher diffusivity than the background appear and dis
pear with a relaxation timet @26–28#. Liu and Oppenhiem
applied the two-zone diffusion model to explain enhanc
diffusion near the kinetic glass transition@29#. It was further
suggested that the existence of long-lived spatial heterog
ities is responsible for the nonexponentiala relaxation@30#.
In a different context, Berne and Pecora used a set of cou
diffusion equations to describe light scattering from elect
lyte solutions@31#. Dieterich and co-workers developed st
chastic models and percolation concepts to study ion di
sion in complex systems@32#. In biophysics, the traditiona
fluid mosaic model describes the cell membrane as a t
dimensional oriented solution in viscous phospholipic p
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teins. Recent revision of the mosaic model introduces c
siderable nanometer heterogeneities in the membr
structure@33,34#. Some proteins are transiently confined
small island domains bounded by obstacle clusters, and s
undergo rapid and directed transport propelled by cytos
etal motors. Single molecule tracking provides a power
way to directly monitor the anomalous diffusion behavior

We do not intend to cover all aspects of anomalous d
fusion but will address features related to single molec
measurements. The classical theory of Brownian motion p
dicts a Gaussian distribution with a linear time depende
for the mean square displacement@35#. Conventional bulk
experiments, analyzed with Brownian theory, often lead
ensemble-averaged diffusion constants. In contrast, si
molecule experiments allow for the tracking of single pa
ticles, thus yielding the complete probability distribution
the displacement and the correlation function of Brown
motion at two different times. In heterogeneous enviro
ments, a Brownian particle travels through distinct diffusi
areas of various sizes and geometrical arrangements. In
model, both static and dynamic heterogeneities of the m
dium translate into a distribution in diffusivity and a temp
ral correlation for the traced particle. Though an approxim
tion of realistic systems, our simplified models capture so
basic aspects of heterogeneous diffusion. A possible ex
sion of the current analysis is to introduce regions of ballis
motion in the homogeneous or inhomogeneous backgro
so that anomalous diffusion can be detected on the leve
the mean square displacement.

The rest of the paper is organized as follows: Two sin
molecule quantities are introduced in Sec. II. These qua
ties are calculated for the stochastic Gaussian model in
III, for the two-state diffusion model in Sec. IV, for the non
Poisson two-state diffusion model in Sec. V. Finally, co
cluding remarks are given in Sec. VI.

II. SINGLE MOLECULE MEASUREMENTS

In single molecule experiments, one can in principle f
low the motion of individual Brownian particles and map o
the probability distribution and correlation as a function
©2001 The American Physical Society01-1
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time. A useful measure to quantify this distribution is t
time-dependent spatial momentI n(t)5^ur (t)2r (0)un&. For
simplicity, we consider diffusion in one-dimensional spac
generalization to higher-dimensional space is straight
ward. Since higher-order moments usually suffer from m
statistical noise, we will study the first two nonvanishin
moments I 2(t) and I 4(t). For a Gaussian distribution
higher-order moments are determined by the second
ment, e.g.,I 4(s)53I 2

2(s); therefore, the deviation from th
Gaussian distribution can be measured byJ(t)5I 4(t)
23I 2(t). To scaleJ(t), a non-Gaussian indicator is define
as

s~ t !5J~ t !/3l 2
2~ t !, ~1!

which was first introduced by Rahman in liquid argon sim
lations and has since been applied to various statistical tr
ments@36#.

Within the models presented in this paper, the me
square displacement follows the Einstein relation for Brow
ian motion,I 2(t)52^D&t, with the effective diffusion con-
stant expressed as an inhomogeneous average. In gener
Brownian particle is randomly selected from the sample, a
the initial diffusion is confined to one domain; therefore, t
short-time distribution is simply an inhomogeneous aver
of Brownian motions over all domains. Consequently,
short-time limit of I 4(t) can be expressed as limt→0 I 4(t)
53^(2Dt)2&, where^D2& denotes an inhomogeneous ave
age. The initial value ofs(t) is given explicitly ass(0)
5^dD2&/^D&2, with ^dD2&5^D2&2^D&2 the variance of
the diffusion constant. Thus, the non-Gaussian indicator
be normalized as

g~ t !5
s~ t !

s~0!
5

^D&2

^dD2&

J~ t !

3I 2~ t !
, ~2!

which will be shown to be independent of the diffusion co
stant.

In single molecule experiments, one can track the dif
sion process of a single particle and make multiple meas
ments along the Brownian trajectory. For example,
square displacements at two different times define the j
moment function

I ~ t1 ,t,t2!5^ur ~ t1!2r ~0!u2ur ~t1t11t2!2r ~t1t1!u2&,
~3!

wheret is the time separation of the two different measu
ments. Without the memory effect of the rate constant,
joint moment function is the product of two independe
random displacements, i.e.,I (t1 ,t,t2)5I 2(t1)I 2(t2), with
I 2(t)5^ur (t)2r (0)u2&. Therefore, the memory effect of th
rate constant can be quantified by the normalized correla
function of the square displacement

f ~ t,t!5
I ~ t,t,t !2@ I 2~ t !#2

I ~ t,0,t !2@ I 2~ t !#2 , ~4!

which will be shown to be proportional to the memory fun
tion of the diffusion constant in the limit oft→0.
04110
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III. STOCHASTIC FLUCTUATION MODEL

Diffusion in homogeneous environments follow
]P(t,r )/]t5¹@D¹P(t,r )#, whereP(t,r ) is the probability
density. The Fourier transformation of the diffusion equati
gives ]P(t,k)/]t52Dk2P(t,k), which is solved formally
asP(t,k)5exp(2k2tD)P(0,k). The inhomogeneous environ
ments experienced by a Brownian particle introduce ti
dependence in the diffusion constant. This time depende
can be treated as a stochastic process so that the spatial
rier transform of the probability distribution is given as

P~ t,k!5K expS 2k2E
0

t

D~ t8!dt8D L
s

P~0,t !. ~5!

The large bracketŝ¯&s in the above equation represent
stochastic average, which is characterized via a cumu
expansion

K expS 2k2E
0

t

D~ t8!dt8D L
s

5expF2k2E
0

t

dt1 x1~ t1!1k4E
0

tE
0

t1
x2~ t1 ,t2!dt1 dt2

2k6E
0

tE
0

t1E
0

t2
x3~ t1 ,t2 ,t3!dt1 dt2 dt31¯G , ~6!

where

x1~ t1!5^D~ t1!&s ,

x2~ t1 ,t2!5^@D~ t1!2x1~ t1!#@D~ t2!2x1~ t2!#&s ,

x3~ t1 ,t2 ,t3!5^@D~ t1!2x1~ t1!#@D~ t2!

2x1~ t2!#@D~ t3!2x1~ t3!#&s ,

etc. In principle, all the cumulants must be included in E
~6! to accurately describe the stochastic fluctuations of
diffusion constant. In practice, the two single molecule qu
tities suggested in Sec. II,g(t) and f (t,t), are both fourth-
order moments and can be evaluated with a cumulant ex
sion accurate tok4. Therefore, we truncate Eq.~6! to second
order, giving

P~ t,k!5exp@2k2D0t1k4M ~ t !#P~0,k!, ~7!

which represents a stochastic Gaussian model for heter
neous diffusion. Here, the stationary condition of the s
chastic process is assumed,D05^D&s is the first cumulant,
M (t)5*0

t (t2t8)x(t8)dt8 is the second cumulant, andx(t)
5^@D(t)2D0#@D(0)2D0#&s is the correlation function of
the diffusion constant. Obviously, our model shares the sa
spirit as Kubo’s stochastic line-shape theory@37#. It should
be noted, however, Eq.~7! cannot be used for the evaluatio
of the distribution function, as the Gaussian model is va
only to the fourth order ofk.

To proceed, we derive expressions forg(t) and f (t)
within the stochastic Gaussian model. In general, mome
1-2
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can be calculated fromP(t,k) as I n(t)5(21)nP(n)(t,k
50); thus, from Eq. ~7!, we have I 2(t)52D0t, I 4(t)
53(2D0t)2124M (t), and J(t)524M (t). The normalized
non-Gaussian indicator in Eq.~2! is given explicitly as

g~ t !5
2M ~ t !

t2x~0!
. ~8!

In the long-time limit, the indicator decays as

lim
t→`

g~ t !5
2

tx~0!
E

0

`

x~ t8!dt85
tc

t
, ~9!

wheretc is the characteristic time scale of the fluctuation
Within the stochastic model, the joint moment correlati
function in Eq.~3! can be derived from

I ~ t1 ,t,t2!5
]2

]k1
2

]2

]k2
2 K expF2k1

2E
0

t1
D~ t8!dt8G

3expF2k2
2E

t11t

t11t1t2
D~ t9!dt9G L

s

, ~10!

where the term in the angular brackets is the joint mom
generating function. The Gaussian averaging of the gene
ing function leads to I (t1 ,t,t2)54D0

2t1t214@M (t11t
1t2)2M (t11t)2M (t21t)1M (t)#, which, when substi-
tuted in Eq.~10!, gives

f ~ t,t!5
M ~2t1t!22M ~ t1t!1M ~t!

M ~2t !22M ~ t !
. ~11!

In the limit of small t, the normalized correlation functio
reduces to

lim
t→0

f ~ t,t!5
x~t!

x~0!
, ~12!

which provides a direct measure of the correlation funct
of the diffusion constant.

IV. TWO-STATE MODEL: POISSON KINETICS

For simplicity, we consider a model consisting of tw
regions with diffusion constantsD1 andD2 , which are cor-
related through two state kinetics~see Fig. 1!. The correla-
tion is introduced in a similar fashion as in two-chann
modulated reactions@4,12# or in random walk with dichoto-
mous fluctuations@38#. In different contexts, related two
state diffusion models have been used to study dynamic
colation and light scattering in electrolyte solutio
@28,29,31#. We first study a Poisson rate process, where
rate fromD1 to D2 is g1 , and the rate fromD2 to D1 is g2 .
The two-state heterogeneous diffusion is described by

Ṗ1~ t,k!52~g11k2D1!P1~ t,k!1g2P2~ t,k!, ~13!

Ṗ2~ t,k!52~g21k2D2!P2~ t,k!1g1P1~ t,k!, ~14!
04110
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which after the Laplace transformation can be solved as

S P1~s,k!

P2~s,k! D5
1

Det~s,k! S s1k2D21g2 g1

g2 s1k2D11g1
D

3S P1~0,K !

P2~0,k! D , ~15!

where the determinant is Det(s,k)5(s1k2D11g1)(s
1k2D21g2)2g1g2 . The total probability distribution for
the Brownian particle isP(s,k)5P1(s,k)1P2(s,k) with the
equilibrium distributionsP1(0)5g2 /(g11g2) and P2(0)
5g1 /(g11g2). For the special case ofg15g25g, the Fou-
rier transform of the probability distribution is given by

P~ t,k!5exp@2~k2D01g!t#

3Fcosh~Dt !1
g

D
sinh~Dt !GP~0,k!, ~16!

whereD05(D11D2)/2 andd5(D12D2)/2 are the average
and difference of the diffusion constants, andD25k4d2

1g2. It is easy to confirm that the above expression redu
to the usual diffusion equationP(t,k)5e2k2DtP(0,k) in the
limit of d→0 or g→`. In Fig. 2, the probability distribution
computed from Eq.~16! is plotted for the following set of
parameters:D155, D251, g50.1, andt51, along with a
Gaussian distribution with the same average diffusion c
stant D053. In comparison with the Gaussian curve, t
probability distribution for the two-state diffusion model e
hibits a higher center peak, a narrower width, and slow
decay in the wings.

Next, we explicitly calculateg(t) and f (t,t) for the case
of two-state Poisson kinetics. Directly from the probabili
distribution function in Eq.~16!, we obtain

g~ t !5
gt2e2gt sinh~gt !

~gt !2 , ~17!

where the time variable is scaled by a single parameteg.
The normalized non-Gaussian indicator computed from
~17! is plotted forg55 andg51 in Fig. 3, where the pre-

FIG. 1. A sketch of the two-state diffusive model for heterog
neous diffusion.
1-3
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dicted long-time asymptotic behavior oftc /t is clearly ob-
served. The joint moment function in Eq.~3! is expressed as
the product of three matrices

I ~ t1 ,t,t2!5( G2~ t1!G0~t!G2~ t2!r0 , ~18!

whereG2(t)52]2G(t,k50) is the second moment matri
and G(t)5G(t,k50) is the zero moment matrix. The ex

FIG. 2. A plot of the probability distribution~solid curve! com-
puted from Eq.~16! for Poisson two-state diffusion withD155,
D251, g50.1, andt51. For comparison, a Gaussian distributio
with the same mean square displacement is shown as the da
curve.

FIG. 3. A plot of the normalized non-Gaussian indicatorg(t)
calculated from Eq.~17! for Poisson kinetics withg55 ~solid
curve! andg51 ~dashed curve!.
04110
plicit expression for the propagatorG(k,s) in Eq. ~15! al-
lows us to evaluateG2(t) and G0(t), thus yielding
I (t1 ,t,t2)54D0

2t1t21(D12D2)2E(t1)E(t2)e22tg, with
E(t)5e2gt sinh(gt)/g. Then, the normalized correlatio
function reads

f ~ t,t!5e22tg ~19!

which is independent of time and the diffusion constant.
shown in Eq.~11!, f (t,t) is generally a function of time and
reduces tox~t! only in the limit of t→0, so Eq.~19! is a
special case due to the exponential decay kinetics.

It is not coincident that the asymptotic limits ofg(t) and
f (t,t) in the two-state model are the same as predicted
the stochastic Gaussian model. In fact, withx(t)
5exp(22gt), Eqs.~8! and~11! from the stochastic Gaussia
model give exactly the sameg(t) and f (t,t) as the two-state
model. Furthermore, with identities x(0)5^dD2&
5(D12D2)2/4 and^D&5(D11D2)/2, all second and fourth
moment functions are the same for the two models. It sho
be noted that the two models are not identical as th
equivalence is not proven beyond the second-order cumu
expansion.

V. TWO-STATE MODEL: POWER-LAW KINETICS

To generalize the above formalism to non-Poisson kin
ics, we need to specifyc i(t), the waiting time probability in
state i, or equivalently,f i(t)52ċ i(t), the waiting time
probability density in statei. First consider the case withou
diffusion. Assuming the initial distribution in state 1, th
probability of finding the particle in the same state is

P1~s!5c1~s!1c1~s!f2~s!f1~s!1¯

5@12f1~s!f2~s!#21c1~s!, ~20!

where the first term represents the probability of staying
state 1 without any transition, the second term represents
probability of beginning in state 1 with a single sojourn
state 2, etc. Note that the Laplace transforms off(t) and
c(t) are related bysc(s)2152f(s). The probability
of finding the particle in state 2 is P2(s)5@1
2f1(s)f2(s)#21f1(s)c2(s), which satisfies the normaliza
tion conditionP1(s)1P2(s)51/s. Similar results can be ob
tained for a particle starting from state 2. To incorpora
spatial diffusion,c(s) andf(s) are generalized toC i(s,k)
5c i(s1k2Di) and F i(s,k)5f i(s1k2Di), which are re-
lated by (s1k2Di)C i(s,k)2152F i(s,k). With the substi-
tution of c andf with C andF, Eq. ~20! can be modified to
describe two-state spatial diffusion, yielding

S P1~s,k!

P2~s,k! D5
1

12F1F2
S C1 F2C1

F1C2 C2
D S P1~0,k!

P2~0,k! D ,

~21!

which reduces to Eq.~15! for Poisson kinetics. Without any
prior knowledge of the diffusion inhomogeneity, we tak

hed
1-4
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f1(t)5f2(t)5f(t) and the equilibrium distribution a
P1(0)5P2(0)51/2. Then, the average distribution functio
is

P~s,k!5
1

2~12F1F2! F ~12F1!~11F2!

s1k2D1

1
~12F2!~11F1!

s1k2D2
G , ~22!

where the initial condition is taken asP(0,k)51. Equation
~22! describes the non-Gaussian distribution for a hetero
neous diffusion process.

With P(s,k) in Eq. ~22! as the generating function, w
can evaluate all the moment functions. For example, the
ond moment is given by

I 2~s!52
]2P~s,k50!

]k2 5
D11D2

s2 , ~23!

which in real-time translates toI 2(t)5(D11D2)t. In gen-
eral, the mean square displacement, as usually measur
bulk experiments, will not reveal the heterogeneity of t
diffusion constant. The fourth-order moment is given by

I 4~s!5
]4P~s,k50!

]k4

5
12

s3 FD1
21D2

21~D12D2!2
sf8~s!

12f2~s!G , ~24!

which cannot be transformed to real time for an arbitra
waiting time distribution function. From Eqs.~23! and ~24!,
we have

J~s!5
6

s3 ~D12D2!2F11
2sf8~s!

12f2~s!G , ~25!

which depends quadratically on the difference of the dif
sion constants. In the short-time limit oft→0, the second
term in Eq.~25! can be ignored and we have

lim
t→0

J~ t !53~D12D2!2t2, ~26!

which predicts a quadratic time dependence. In combina
with I 2(t) in Eq. ~23!, the short-time limit ofI 4(t) can be
expressed as limt→0 I 4(t)56(D1

21D1
2)t253^(2Dt)2&,

where^D2& indicates an inhomogeneous average. Simila
Eq. ~2!, the initial value,s(0)5(D12D2)2/(D11D2)2, de-
fines the normalized non-Gaussian indicator as

g~ t !5
s~ t !

s~0!
5S D11D2

D12D2
D 2 J~ t !

3I 2~ t !
, ~27!

which is independent of diffusion constants. The long-tim
asymptotic behavior ofg(t) or equivalentlyJ(t) has to be
examined for two separated cases.

In the first case, the waiting time distributionf(t) has a
characteristic time scaletc such thatf(s) can be analyti-
04110
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cally expanded asf(s)511sf81s2f9/21¯ . To second
order in thes expansion off(s), we obtain

J~s!'3~D12D2!2
f8~0!22f9~0!

s2f8~0!
, ~28!

which predicts a linear time dependence inJ(t) or, equiva-
lently, limt→` g(t)}1/t. With the definition 2f8(0)
5*f(t)t dt5^t& and f9(0)5*f(t)t2 dt5^t2&, the char-
acteristic time scaletc can be explicitly expressed astc
5(^t2&2^t&2)/^t&. This definition oftc is equivalent to Eq.
~9! derived for the stochastic Gaussian model. Then, the
ear deviation from the Gaussian behavior becomes

lim
t→`

J~ t !'3~D12D2!2tct, ~29!

where (D12D2)tc characterizes the length scale of spat
heterogeneity. Comparing Eqs.~26! and ~27!, the transition
from the short-time quadratic behavior to the long-time l
ear behavior inJ(t) takes place att'tc , which is another
measure of the characteristic relaxation time.

In the second case, the waiting time distribution has
verging moments due to the lack of a characteristic ti
scale. In proteins and glassy systems, there exist a w
range of relaxation time scales, which can often be cha
terized by power-law decay@39#. A generic form of power-
law relaxation is given in the Laplace form as

f~s!5exp@2~s/g!a#, ~30!

which is not analytical ats50 for 0,a,1. In real time,
f(t) is normalized to unity and decays at long times acco
ing to 1/t (11a). Substitutingf(s) into Eq. ~25! leads to

FIG. 4. A plot of the normalized non-Gaussian indicatorg(t)
calculated from Eq.~31! for power-law kinetics witha50.25, a
50.5, anda50.075, respectively.
1-5
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J~s!5
6~D12D2!2

s3 H 12
2a~s/g!a exp@2~s/g!a#

12exp@22~s/g!a# J
~31!

which in the small-s limit reduces to lims→0 J(s)56(D1
2D2)2(12a)/s3. Therefore, the asymptotic limit of th
non-Gaussian indicatorg(t) does not decay to zero bu
reaches a plateau value of

lim
t→`

g~ t !512a, ~32!

which is determined by the exponent of the power-law
cay. In Fig. 4 the normalized non-Gaussian indicator co
puted from Eq.~31! is plotted as a function of time withg
51 for a50.25,a50.5, anda50.75. After the initial de-
cay, g(t) approaches asymptotically the plateau value p
dicted by Eq.~32!.

VI. CONCLUSIONS

Diffusion in heterogeneous environments obeys the E
stein relation for the mean square displacement but exh
non-Gaussian distributions and memory effects, which
be measured through single molecular methods. Our m
studies have led to the following conclusions.

~1! Two possible single molecule quantities are propos
the normalized non-Gaussian indicator,g(t), which quanti-
fies the deviation from the Gaussian distribution of Brown
particles, and the normalized correlation function of squ
displacements,f (t,t), which directly probes the memory e
fect of the fluctuating diffusion constant.
ci.

d

.

n-

m
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~2! In the same spirit as Kubo’s stochastic line-sha
theory, the stochastic Gaussian model captures essentia
tures of heterogeneous diffusion. In particular, the long-ti
limit of g(t) is shown to decay in the asymptotic form o
tc /t, with tc being the characteristic time scale, and t
short-time limit of f (t,t) reproduces the memory function o
the diffusion constant.

~3! The two-state diffusion model allows us to calcula
the non-Gaussian distribution explicitly, thus confirming t
asymptotic behavior ofg(t)51/gt and the exponential deca
of f (t,t)5e22gt, whereg is the rate constant. It is interes
ing to note that the two-state diffusion model and the s
chastic model are equivalent up to second order in the cu
lant expansion.

~4! The two-state diffusion model can be generalized
non-Poisson kinetics, which is specified by the waiting tim
distribution functionf(t). For the power-law waiting time
distribution with a long-time tail of 1/t (11a), the non-
Gaussian indicatorg(t) does not decay to zero but saturat
at an asymptotic value of (12a).

In summary, the deviation from the usual Brownian behav
@40#, as revealed by single molecule measurements, prov
useful information about the variance and the scale of spa
inhomogeneities as well as the functional form of the lon
range correlation function.

ACKNOWLEDGMENTS

The research is supported by the MIT start-up fund a
NSF. The author thanks Younjoon Jung and Jianlan Wu
their help during the course of this work.
r,

hys.

le-

ys.
@1# W. E. Moerner and M. Orrit, Science283, 1670~1999!.
@2# L. Edman, U. Mets, and R. Rigler, Proc. Natl. Acad. S

U.S.A. 93, 6710~1996!.
@3# Y. Jia, A. Sytnik, L. Li, S. Vladimirov, B. S. Cooperman, an

R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A.94, 7932
~1997!.

@4# H. P. Lu, L. Xun, and X. S. Xie, Science282, 1877~1998!.
@5# T. Ha, A. Y. Ting, J. Liang, A. A. Deniz, D. S. Chemla, P. G

Schultz, and S. Weiss, Chem. Phys.247, 107 ~1999!.
@6# C. G. Baumann, V. A. Bloomfield, S. B. Smith, C. Busta

mante, M. D. Wang, and S. M. Block, Biophys. J.78, 1965
~2000!.

@7# P. Reilly and J. L. Skinner, Phys. Rev. Lett.71, 4257~1993!.
@8# F. L. H. Brown and R. J. Silbey, J. Chem. Phys.108, 7434

~1998!.
@9# J. Wang and P. Wolynes, Phys. Rev. Lett.74, 4317~1995!.

@10# E. Geva and J. L. Skinner, Chem. Phys. Lett.288, 225~1998!.
@11# K. Weston, P. J. Carson, H. Metiu, and S. K. Buratto, J. Che

Phys.109, 7474~1998!.
@12# J. Cao, Chem. Phys. Lett.327, 38 ~2000!.
@13# N. Agmon, J. Phys. Chem. B104, 7830~2000!.
@14# T. Bache, W. E. Moerner, M. Orrit, and U. P. Wild,Single-

Molecule Optical Detection, Imaging and Spectroscopy~VCH,
Weinheim, 1996!.
.

@15# X. S. Xie and J. K. Trautman, Annu. Rev. Phys. Chem.49, 441
~1998!.

@16# G. J. Schutz, H. Schindler, and T. Schmidt, Biophys. J.73,
1073 ~1997!.

@17# R. M. Dickson, D. J. Norris, Y. L. Tzeng, and W. E. Moerne
Science274, 966 ~1996!.

@18# X. Xu and E. S. Yeung, Science275, 1106~1997!.
@19# T. Ha, J. Glass, T. Enderle, D. S. Chemla, and S. Weiss, P

Rev. Lett.80, 2093~1998!.
@20# M. A. Osborne, S. Balasubramanian, W. S. Futey, and D. K

nerman, J. Phys. Chem. B102, 3160~1998!.
@21# M. T. Cicerone and M. D. Ediger, J. Chem. Phys.104, 7210

~1996!.
@22# B. J. Cherayil and M. D. Fayer, J. Chem. Phys.107, 7642

~1997!.
@23# S. C. Tucker, Chem. Rev.99, 391 ~1999!.
@24# S. A. Egorov and J. L. Skinner, J. Chem. Phys.112, 275

~2000!.
@25# G. Hinze, D. D. Brace, S. D. Gottke, and M. D. Fayer, Ph

Rev. Lett.84, 2437~2000!.
@26# A. K. Harrison and R. Zwanzig, Phys. Rev. A32, 1072~1985!.
@27# R. Zwanzig, Proc. Natl. Acad. Sci. U.S.A.85, 2029~1988!.
@28# R. Zwanzig, Chem. Phys. Lett.164, 639 ~1989!.
1-6



. E

n,

.

SINGLE MOLECULE TRACKING OF HETEROGENEOUS . . . PHYSICAL REVIEW E 63 041101
@29# C. Z. W. Liu and I. Oppenheim, Phys. Rev. E53, 799
~1996!.

@30# M. Tokuyama, Y. Enomoto, and I. Oppenhiem, Phys. Rev
56, 2302~1997!.

@31# B. J. Berne and R. Pecora,Dynamic Light Scattering~Wiley-
Interscience, New York, 1976!.

@32# D. Dieterich, O. Durr, P. Pendzig, A. Bunde, and A. Nitza
Physica A266, 229 ~1999!.

@33# K. Jacobson, E. D. Sheets, and R. Simon, Science268, 1441
~1995!.
04110
@34# F. L. H. Brown, D. M. Leitner, J. A. McCammon, and K. R
Wilson, Biophys.78, 125 ~2000!.

@35# R. I. Cukier and J. M. Deutch, Phys. Rev.177, 240 ~1969!.
@36# A. Rahman, Phys. Rev.136, A405 ~1964!.
@37# R. Kubo, N. Toda, and N. Hashitsume,Statistical Physics II

~Springer-Verlag, Berlin, 1985!.
@38# P. Allegrini, P. Grigolini, and B. J. West, Phys. Rev. E54,

4760 ~1996!.
@39# G. Zumofen and J. Klafter, Phys. Rev. E47, 851 ~1993!.
@40# B. Cut, B. Liu, and S. A. Rice~unpublished!.
1-7


