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Single molecule tracking of heterogeneous diffusion
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The mean square displacement of heterogeneous diffusion obeys the Einstein relation, thereby showing no
sign of heterogeneities in the ensemble measurement of the diffusion constant. The signature of spatial het-
erogeneities appears in the time evolution of the non-Gaussian distribution and in the cross correlation between
the square displacements at different times, both available from single molecule diffusional trajectories. As a
guantitative measure, the non-Gaussian indicg{ty decays asymptotically to zero according to fot finite
time correlation, but saturates at a plateau value for power-law correlation. In addition, the joint moment
correlation functionf(t,r) provides a direct probe of the memory effect of the fluctuating rate constant. A
two-state diffusion model and a stochastic Gaussian model are constructed to evaluate these quantities and are
shown to yield the same result within the second cumulant expansion.
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[. INTRODUCTION teins. Recent revision of the mosaic model introduces con-
siderable nanometer heterogeneities in the membrane
Single molecule detection and imaging has provided rictstructure[33,34. Some proteins are transiently confined to
and detailed information about many fundamental physicapmall island domains bounded by obstacle clusters, and some
processe§1—6]. Such information is often hidden in en- undergo rapid and directed transport propelled by cytoskel-
semble measurements but can be obtained from careful stgfal motors. Single molecule tracking provides a powerful
tistical anaiysis of Singie molecule ddia_lg:l Several ar- Way to d|reCt|y monitor the anomalous dlfoSIon behaVIOI’.
ticles[14,15 have extensively reviewed the current progress We do not intend to cover all aspects of anomalous dif-
of Singie molecule methods in various Systems ranging fron{USion but will address features related to Single molecule
|0w_temperature amorphous Soiids to room_temperature erfneasurements. The classical theory of Brownian motion pre-
Zymatic reactions_ The fOCUS Of th|S paper iS the Singie moi.diCtS a Gaussian distribution with a linear time dependence
ecule detection of translational diffusion. Schmidt and cofor the mean square displacem¢86]. Conventional bulk
workers have recorded translational diffusion trajectories ofXperiments, analyzed with Brownian theory, often lead to
individual fluorescence-labeled lipid molecules in a fluid ensemble-averaged diffusion constants. In contrast, single
lipid membrane. They found anomalous diffusion consistingMolecule experiments allow for the tracking of single par-
of a slow component and a fast component and interpreteficles, thus yielding the complete probability distribution of
their findings as a result of island structures of the membranthe displacement and the correlation function of Brownian
surrounded by barriers for lipid diffusidi6]. The diffusion ~ motion at two different times. In heterogeneous environ-
trajectories of single dye molecules have also been recordé@ents, a Brownian particle travels through distinct diffusion
in poiyacryiamide geis by Dickson and CO-WOH«EE] and areas of various sizes and geometrical arrangements. In our
in solution by Xu and Yeung among othdik8—20. model, both static and dynamic heterogeneities of the me-
Anomaious transiationai diffusion iS an intriguing topiC in dium transiate into a diStribution.in d|foS|V|ty and a tempo-
physics, chemistry, and biology. It has long been recognizeég! correlation for the traced particle. Though an approxima-
that spatial heterogeneities are inherent in the dynamics dfon of realistic systems, our simplified models capture some
glass-forming systems including polymers, supercooled |iqbasic aspects of heterogeneous diffusion. A possible exten-
uids, supercritical liquids, and colloidal fluidi21—25. sion of the current analysis is to introduce regions of ballistic
Zwanzig studied percolation in a dynamic disordered systenfnotion in the homogeneous or inhomogeneous background
using a two-zone diffusion modeiy where Sphericai domain§0 that anoma|0usldiffusi0n can be detected on the level of
of higher diffusivity than the background appear and disapthe mean square displacement.
pear with a relaxation time [26_28 Liu and Oppenhiem The rest of the paper is Organized as follows: Two Single
applied the two-zone diffusion model to explain enhancednolecule quantities are introduced in Sec. Il. These quanti-
diffusion near the kinetic giass trans”:i@ng] It was further ties are calculated for the stochastic Gaussian model in Sec.
suggested that the existence of long-lived spatial heterogenél, for the two-state diffusion model in Sec. IV, for the non-
ities is responsible for the nonexponentiatelaxation[30]. ~ Poisson two-state diffusion model in Sec. V. Finally, con-
In a different context, Berne and Pecora used a set of coupleguding remarks are given in Sec. VI.
diffusion equations to describe light scattering from electro-
lyte solutions[31]. Dieterich and co-workers developed sto-
chastic models and percolation concepts to study ion diffu-
sion in complex systemi32]. In biophysics, the traditional In single molecule experiments, one can in principle fol-
fluid mosaic model describes the cell membrane as a twdew the motion of individual Brownian particles and map out
dimensional oriented solution in viscous phospholipic pro-the probability distribution and correlation as a function of

II. SINGLE MOLECULE MEASUREMENTS
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time. A useful measure to quantify this distribution is the Ill. STOCHASTIC FLUCTUATION MODEL
time-dependent spatial momehy(t)={|r(t) —r(0)|"). For e . .
simplicity, we consider diffusion in one-dimensional space;&Pl(Dt'fIl)Jfé?iV['BVSaﬂg?e\?ﬁ]ﬂiP(f?;”irgr,:?eenibagllilfws
generalization to higher-dimensional space is straightfor-, * AR A e pr Y
ward. Since higher-order moments usually suffer from mored.enS'ty' The Fourier traznsformatlon_ of t.he diffusion equation
statistical noise, we will study the first two nonvanishing glvsstélf’ (i’k)/&iT(Z;DDI'; g Igt’k_?_’h w_h|rc]h is solved formqlly

moments 1,(t) and I,4(t). For a Gaussian distribution, asP(t,k) =exp( )P(0k). The inhomogeneous environ-

higher-order moments are determined by the second mdpents experienced by a Brownian particle introduce time
ment, e.g.J(s)=312(s); therefore, the deviation from the dependence in the diffusion constant. This time dependence
I Yl 4 - 2 l 3

) N can be treated as a stochastic process so that the spatial Fou-
Gaussian distribution can be measured Bgt)=1,(t) P P

~31,(1). To scalel(t), a non-Gaussian indicator is defined rier transform of the probability distribution is given as
as t
P(t,k)=<exp< —sz D(t’)dt’)> P(0}). (5)
a(t)=3(1)/315(1), (1) 0 s

which was first introduced by Rahman in liquid argon simu-The large bracket$:--)< in the above equation represent a
lations and has since been applied to various statistical treastochastic average, which is characterized via a cumulant
ments[36]. expansion

Within the models presented in this paper, the mean
square displacement follows the Einstein relation for Brown- exd — kZJtD(t’)dt’>>
ian motion, | ,(t) =2(D)t, with the effective diffusion con- 0
stant expressed as an inhomogeneous average. In general, the
Brownian particle is randomly selected from the sample, and 5 [t RN
the initial diffusion is confined to one domain; therefore, the =exg —k jodtl xa(t) +k fo fo Xa(ty,t2)dty dt;
short-time distribution is simply an inhomogeneous average
of Brownian motions over all domains. Consequently, the o[t ([t
short-time limit of 1 ,(t) can be expressed as |iny I 4(t) —k fo fo fo Xa(ty,tz,t3)dty dtp dig+- -
=3((2Dt)?), where(D?) denotes an inhomogeneous aver-
age. The initial value ofs(t) is given explicitly aso(0) where
=(6D?%)/(D)?, with (sD?)=(D?)—(D)? the variance of
the diffusion constant. Thus, the non-Gaussian indicator can x1(t1)=(D(t1))s,
be normalized as

S

. (6

x2(t1,t2) =([D(ty) — x1(t) J[D(t2) — x1(t2) D)s,

x3(t1,t2,t3) =([D(ty)— x1(t) ][ D(t,)

which will be shown to be independent of the diffusion con- —x1(t2) ][D(t3) — xa(ta)])s,
stant.
In single molecule experiments, one can track the diffu

_ o) (D) I
9()="710) = (403 31%0)

)

etc. In principle, all the cumulants must be included in Eq.

sion process of a single particle and make multiple measuré@ to accurately describe_the stochast_ic fluctuations of the
ments along the Brownian trajectory. For example thediffusion constant. In practice, the two single molecule quan-

square displacements at two different times define the jointtieS suggested in Sec. Ig(t) andf(t,7), are both fourth-
moment function order moments and can be evaluated with a cumulant expan-

sion accurate t&*. Therefore, we truncate E(6) to second
I(ty, 7 t)={|r(t) = r(0)|2[r(7+t,+t,) —r(7+1t,)]?), order, giving
€

P(t,k)=exd —k?Dot+k*M(t)]P(0k), 7
where 7 is the time separation of the two different measure-
ments. Without the memory effect of the rate constant, thavhich represents a stochastic Gaussian model for heteroge-
joint moment function is the product of two independentneous diffusion. Here, the stationary condition of the sto-
random displacements, i.el(t;,7,t;)=1,(t;)1,(t,), with chastic process is assumddy= (D) is the first cumulant,
1,(t)=(|r(t)—r(0)|?). Therefore, the memory effect of the M(t)=/p(t—t")x(t')dt’ is the second cumulant, andt)
rate constant can be quantified by the normalized correlatiorr ([ D(t) —Do][D(0)—Dg])s is the correlation function of

function of the square displacement the diffusion constant. Obviously, our model shares the same
spirit as Kubo'’s stochastic line-shape thed8y]. It should
I(t,7,t)—[12(t)]? be noted, however, E§7) cannot be used for the evaluation
f(t,m)= 1(t,00)—[1,(t)]%" 4 of the distribution function, as the Gaussian model is valid

only to the fourth order ok.
which will be shown to be proportional to the memory func- To proceed, we derive expressions foft) and f(t)
tion of the diffusion constant in the limit df—0. within the stochastic Gaussian model. In general, moments
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can be calculated fronP(t,k) as I,(t)=(—1)"PM(t,k
=0); thus, from Eq.(7), we have l,(t)=2Dgt, 14(t)
=3(2D,t)%+24M(t), and J(t)=24M(t). The normalized
non-Gaussian indicator in ER) is given explicitly as

(0= ®
I exor
In the long-time limit, the indicator decays as
lim g(t) 2 fw t)dt’ = -° 9)
im =— =—,
tsoo o tx(0) Jo X( t

where 7., is the characteristic time scale of the fluctuations.
Within the stochastic model, the joint moment correlation
function in Eq.(3) can be derived from

<ex;{ —kifotlD(t’)dt’
xexp{—k%f > , (10
t

where the term in the angular brackets is the joint momen

(92 2

I(t 7Tit ):__
D2 0kE ks

ty+7+

to
D(t")dt”

1t7
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FIG. 1. A sketch of the two-state diffusive model for heteroge-
neous diffusion.

which after the Laplace transformation can be solved as

(Fﬁ(s,k))_; "

Po(s,k)/  Def(s,k) Y2 s+k?D;+ 1y,
P,(0K)

¢ X( P,(0K) ) ’ (19

generating function. The Gaussian averaging of the generat-

ing function leads tol(ty,,t;)=4Datt,+4[M(t;+7
+1,) —M(t;+7) —M(t,+ 7) + M(7)], which, when substi-
tuted in Eq.(10), gives

M(2t+ 7)—2M(t+7)+M(7)

ftmn= M(2t)—2M (1)

11

In the limit of smallt, the normalized correlation function
reduces to

x(7)

lim f(t,7)= (0’

t—0

(12

where the determinant is Detk)=(s+k?D;+ y;)(s
+k?D,+ v,)— y17,. The total probability distribution for
the Brownian particle i®(s,k) = P1(s,k) + P»(s,k) with the
equilibrium distributionsP(0)=y,/(v,+ v,) and P,(0)
=vy./(y1+ 7y,). For the special case of,= y,= vy, the Fou-
rier transform of the probability distribution is given by

P(t,k)=ex — (kK2Do+ y)t]
x cosr(At)Jr%sinr’(At) P(OK),  (16)

whereDy=(D,+D,)/2 and6=(D,—D,)/2 are the average
and difference of the diffusion constants, and=k*s?

which provides a direct measure of the correlation function+ 2. It is easy to confirm that the above expression reduces

of the diffusion constant.

IV. TWO-STATE MODEL: POISSON KINETICS

For simplicity, we consider a model consisting of two
regions with diffusion constant®, andD,, which are cor-
related through two state kineti¢see Fig. 1 The correla-
tion is introduced in a similar fashion as in two-channel
modulated reactionst,12] or in random walk with dichoto-
mous fluctuationd38]. In different contexts, related two-

to the usual diffusion equatioR(t,k)=eC'P(0k) in the
limit of 6—0 or y—. In Fig. 2, the probability distribution
computed from Eq(16) is plotted for the following set of
parametersD,=5, D,=1, y=0.1, andt=1, along with a
Gaussian distribution with the same average diffusion con-
stant Dyg=3. In comparison with the Gaussian curve, the
probability distribution for the two-state diffusion model ex-
hibits a higher center peak, a narrower width, and slower
decay in the wings.

Next, we explicitly calculategy(t) andf(t,7) for the case

state diffusion models have been used to study dynamic Pes;
colation and light scattering in electrolyte solutions di
[28,29,3]. We first study a Poisson rate process, where the
rate fromD4 to D, is y;, and the rate fronD, to D4 is 5.

two-state Poisson kinetics. Directly from the probability
stribution function in Eq(16), we obtain

yt—e~ Y sinh(yt)

The two-state heterogeneous diffusion is described by g(t)= )2 ; (17)
P1(t,k)=—(y1+Kk?D1)P1(t,K) + 72Po(t,K),  (13)  \where the time variable is scaled by a single parameter
. The normalized non-Gaussian indicator computed from Eq.
P,o(t,K)=—(y,+k2D,)P,(t,k)+ y1P1(t,k), (14 (17) is plotted fory=5 andy=1 in Fig. 3, where the pre-
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P(x)

FIG. 2. A plot of the probability distributiorisolid curve com-
puted from Eq.(16) for Poisson two-state diffusion with;=5,
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plicit expression for the propagat@(k,s) in Eq. (15 al-
lows us to evaluateG,(t) and Gg(t), thus yielding
I(ty,7,t) =4D3t t,+ (D, — D) 2E(t))E(t)e 27,  with
E(t)=e "sinh(3t)/y. Then, the normalized correlation
function reads

f(t,r)=e 27 (19
which is independent of time and the diffusion constant. As
shown in Eq.(11), f(t,7) is generally a function of time and
reduces toyx(7) only in the limit of t—0, so Eq.(19) is a
special case due to the exponential decay kinetics.

It is not coincident that the asymptotic limits g{t) and
f(t,7) in the two-state model are the same as predicted by
the stochastic Gaussian model. In fact, with(t)
=exp(—2yt), Egs.(8) and(11) from the stochastic Gaussian
model give exactly the santgt) andf(t,r) as the two-state
model.  Furthermore, with identities y(0)=(sD?)
=(D;—D,)?%4 and(D)=(D;+D,)/2, all second and fourth
moment functions are the same for the two models. It should
be noted that the two models are not identical as their
equivalence is not proven beyond the second-order cumulant

D,=1, y=0.1, andt=1. For comparison, a Gaussian distribution expansion.
with the same mean square displacement is shown as the dashed

curve.

dicted long-time asymptotic behavior a@f/t is clearly ob-
served. The joint moment function in E@) is expressed as
the product of three matrices

1(ty,7,t)= 2, Ga(ty)Go(7)Ga(t2)po, (18

whereG,(t) = — 3°G(t,k=0) is the second moment matrix
and G(7)=G(7,k=0) is the zero moment matrix. The ex-

1 7 T L

1
y=50 |
— =y=1.0
=)
—— —— ——
1
10 15 20
time

FIG. 3. A plot of the normalized non-Gaussian indicagt)
calculated from Eq.17) for Poisson kinetics withy=5 (solid
curve and y=1 (dashed curve

V. TWO-STATE MODEL: POWER-LAW KINETICS

To generalize the above formalism to non-Poisson kinet-
ics, we need to specify;(t), the waiting time probability in
statei, or equivalently, ¢;(t)=—¢(t), the waiting time
probability density in staté First consider the case without
diffusion. Assuming the initial distribution in state 1, the
probability of finding the particle in the same state is

P1(S)=41(S) + h1(S) ho(S) pa(S) +

=[1-$1(5) $2(5)] ™ (), (20
where the first term represents the probability of staying in
state 1 without any transition, the second term represents the
probability of beginning in state 1 with a single sojourn in
state 2, etc. Note that the Laplace transformspéf) and
Y(t) are related bysy(s)—1=—¢(s). The probability

of finding the particle in state 2 isPy(s)=[1

— $1(3) pa(S)] 1p1(S) o(S), which satisfies the normaliza-
tion conditionP(s) + P,(s) =1/s. Similar results can be ob-
tained for a particle starting from state 2. To incorporate
spatial diffusion,(s) and ¢(s) are generalized t&;(s,k)

=i (s+k?D;) and ®;(s,k)=¢;(s+k?D;), which are re-
lated by 6+k?D;)W¥;(s,k) — 1= —®;(s,k). With the substi-
tution of s and ¢ with ¥ and®, Eq. (20) can be modified to
describe two-state spatial diffusion, yielding

vy

(Pl(s,k)> 1 (
.V,

P (
PZ(Sik) _1_CI)1(I)2

Pl(O,k)>
v, '

P,(0k)
(21)

which reduces to Eq.15) for Poisson kinetics. Without any
prior knowledge of the diffusion inhomogeneity, we take
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d1(1) = o(t)=p(t) and the equilibrium distribution as
P,(0)=P,(0)=1/2. Then, the average distribution function

iy
-

\ "‘|| T T
Is L
N (1-Dy)(1+D)) °-8\i .
K= 50=%,0, |  s+kD, \
1-0,)(1+d 06 i\ -
(1-@)(1+y)] P N
s+k DZ < Y T T e — e
2 A
where the initial condition is taken &3(0k)=1. Equation 0.4 - 4
(22) describes the non-Gaussian distribution for a heteroge
neous diffusion process. e e
With P(s,k) in Eq. (22) as the generating function, we T
can evaluate all the moment functions. For example, the sec ~ °?[ —oc92 i
ond moment is given by meemmem = 075
(92P(S,k:0) D,+D 0 : ! ! !
l2(s)=— K2 = lsz = (23 0 2 4 6 8 10

which in real-time translates tb,(t)=(D,+D,)t. In gen-

eral, the mean square displacement, as usually measured inFIG. 4. A plot of the normalized non-Gaussian indicagt)

bulk experiments, will not reveal the heterogeneity of thecalculated from Eq(31) for power-law kinetics witha=0.25, a
diffusion constant. The fourth-order moment is given by ~ =0.5, anda=0.075, respectively.

*P(s,k=0)

- cally expanded ag(s)=1+s¢’ +s?¢"/2+---. To second
l4(s)= kA order in thes expansion of¢(s), we obtain

S3

S¢'(s)
Df+D3+(Dy~ Dz)zm
which cannot be transformed to real time for an arbitrarywhich predicts a linear time dependencelit) or, equiva-
waiting time distribution function. From Eq§23) and (24), lently, lim,_.. g(t)=1%. With the definition 1_¢,(0)
we have =[¢(t)t dt=(t) and ¢"(0)=[ H(t)t? dt=(t?), the char-

254/ (s) acteristic time scaler, can be explicitly expressed as
L =((t2)—(t)?)/(t). This definition ofr is equivalent to Eq.
1=-¢%(s) (9) derived for the stochastic Gaussian model. Then, the lin-
which depends quadratically on the difference of the diffu-=2" deviation from the Gaussian behavior becomes

sion constants. In the short-time limit 6f-0, the second
term in Eqg.(25) can be ignored and we have

2 0 2_ qnm 0
, (29 J(s)~3(D1—D2)2%, (28)

6
J(s)= g(Dl—Dz)z 1+

, (25

lim J(t)~3(D;—D,)?7t, (29
t—oo

lim J(t)=3(D;—D,)?t?, 26 . :
tl_,o (1)=3(D1~D,) @9 here 0,—D,) 7. characterizes the length scale of spatial

heterogeneity. Comparing Eq®6) and (27), the transition
which predicts a quadratic time dependence. In combinatiofrom the short-time quadratic behavior to the long-time lin-

with 1,(t) in Eg. (23), the short-time limit ofl ,(t) can be ear behavior inJ(t) takes place at~ 7., which is another
expressed as limgl4(t)=6(D2+D?)t?=3((2Dt)?), measure of the characteristic relaxation time.

where(D?) indicates an inhomogeneous average. Similar to N the second case, the waiting time distribution has di-
Eq. (2), the initial value,0(0)=(D;—D,)%(D;+D,)?, de- Vverging moments due to the lack of a characteristic time
fines the normalized non-Gaussian indicator as scale. In proteins and glassy systems, there exist a wide

range of relaxation time scales, which can often be charac-
2
J(1)

terized by power-law decaB9]. A generic form of power-
31%(Y) (27) law relaxation is given in the Laplace form as

D,+D,

t
o= 210 - 5D

=0

which is independent of diffusion constants. The long-time ¢(s)=exd —(s/y)“], (30)
asymptotic behavior ofj(t) or equivalentlyJ(t) has to be
examined for two separated cases. which is not analytical as=0 for 0O<a<1. In real time,

In the first case, the waiting time distributiab(t) has a  ¢(t) is normalized to unity and decays at long times accord-
characteristic time scale, such that¢(s) can be analyti- ing to 14(2*%). Substitutinge(s) into Eq. (25) leads to
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6(D1—D2)2 2a(sly)“exd — (s y)%] (2) In the same spirit as Kubo's stochastic line-shape
J(s)= 3 - — — @ theory, the stochastic Gaussian model captures essential fea-
S 1—exd —2(s/y)%] o ; .

(31) tures of heterogeneous diffusion. In particular, the long-time

limit of g(t) is shown to decay in the asymptotic form of

which in the smalls limit reduces to lig_,J(s)=6(D;  7./t, with 7. being the characteristic time scale, and the
—D,)?(1—a)/s®. Therefore, the asymptotic limit of the short-time limit off(t,7) reproduces the memory function of

non-Gaussian indicatog(t) does not decay to zero but the diffusion constant.

reaches a plateau value of (3) The two-state diffusion model allows us to calculate
) the non-Gaussian distribution explicitly, thus confirming the
lim g(t)=1-a, (32)  asymptotic behavior aj(t) = 1/yt and the exponential decay

t—oo

of f(t,7)=e 2", wherevy is the rate constant. It is interest-

which is determined by the exponent of the power-law de"d 0 note that the two-state diffusion model and the sto-
chastic model are equivalent up to second order in the cumu-

cay. In Fig. 4 the normalized non-Gaussian indicator com-I .
puted from Eq.31) is plotted as a function of time witly ant4ex_|;_)r?n5|on. diffusi gel b lized
=1 for a=0.25,a=0.5, anda=0.75. After the initial de- )P he two-state diflusion model can be generaized 1o
cay, g(t) approaches asymptotically the plateau value pre-n_on'_ oisson kinetics, which Is specified by the waiting time
: distribution function¢(t). For the power-law waiting time
dicted by Eq.(32). o . . . 1+a)
distribution with a long-time tail of 1f**®), the non-
Gaussian indicatog(t) does not decay to zero but saturates
at an asymptotic value of (1 «).

Diffusion in heterogeneous environments obeys the Ein-

stein relation for the mean square displacement but exhibi summary, the deV|a}t|on from the usual Brownian behavllor
non-Gaussian distributions and memory effects, which cah*0): @ revealed by single molecule measurements, provides

be measured through single molecular methods. Our mod&seful information about the variance and the scale of spatial
studies have led to the following conclusions ' inhomogeneities as well as the functional form of the long-

range correlation function.

(1) Two possible single molecule quantities are proposed:
the normalized non-Gaussian indicatg(t), which quanti-

fies the deviation from the Gaussian distribution of Brownian

particles, and the normalized correlation function of square The research is supported by the MIT start-up fund and

displacementsi(t, ), which directly probes the memory ef- NSF. The author thanks Younjoon Jung and Jianlan Wu for
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